Body temperature and host species preferences of SARS-CoV-2

      There is currently uncertainty regarding the zoonotic repertoire of SARS-CoV-2. Shi et al. observed that cats were susceptible. Dogs and ferrets show intermediate vulnerability. The pathogen failed to infect or replicate in pigs, chickens and ducks [
      • Shi J.
      • Wen Z.
      • Zhong G.
      • Yang H.
      • Wang C.
      • Huang B.
      • et al.
      Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2.
      ]. Their data strongly suggest that the pathogen's species predilection may be related to body temperature. The preferred hosts, human and cats, exhibit mean body temperatures below that of more resistant hosts such as pigs, chicken and ducks ( Table 1), whose corporal temperatures can range between 39°C and 42°C ( Table 1).
      Table 1 Rectal/core temperatures (in degrees Celsius) of animals/species and their proclivity to SARS-CoV-2 Infection
      Animal Mean temperature Source
      Suspected hosts
      Chinese pangolin 33.4–35.5 Heath 1986 [
      • Heath M.E.
      • Hammel H.T.
      Body temperature and rate of O2 consumption in Chinese pangolins.
      ]
      South East Asian bats 37.1 Hu 2011 [
      • Hu K.
      • Meng Y.
      • Lei H.
      • Zhang S.
      Differential changes of regional cerebral blood flow in two bat species during induced hypothermia measured by perfusion-weighted magnetic resonance imaging.
      ]
      Golden hamster 36.1 Eberli 2011 [
      • Eberli P.
      • Gebhardt-Henrich S.G.
      • Steiger A.
      The influence of handling and exposure to a ferret on body temperature and running wheel activity of golden hamsters (Mesocricetus auratus).
      ], Sia 2020 [
      • Sia S.F.
      • Yan L.M.
      • Chin A.W.H.
      • Fung K.
      • Choy K.T.
      • Wong A.Y.L.
      • et al.
      Pathogenesis and transmission of SARS-CoV-2 in golden hamsters.
      ]
      Permissive hosts
      Masked palm civets ( Paguma larvata) 36.9 Wu 2005 [
      • Wu D.
      • Tu C.
      • Xin C.
      • Xuan H.
      • Meng Q.
      • Liu Y.
      • et al.
      Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates.
      ]
      Humans 37
      Cats 37.8 Levy 2015 [
      • Levy J.K.
      • Nutt K.R.
      • Tucker S.J.
      Reference interval for rectal temperature in healthy confined adult cats.
      ]
      European mink 36.2–38.4 Youngman 1990 [
      • Youngman P.M.
      Mustela Lutreola.
      ]
      Intermediate host
      Ferret 38.2–38.8 Maxwell 2016 [
      • Maxwell B.M.
      • Brunell M.K.
      • Olsen C.H.
      Bentzel DE.Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo).
      ]
      Beagle dogs 39.1 Refinetti 2003 [
      • Refinetti R.
      • Piccione G.
      Daily rhythmicity of body temperature in the dog.
      ]
      Resistant host
      Large white pigs 39.3–39.8 Reneaudeau 2007 [
      • Renaudeau D.
      • Huc E.
      • Noblet J.
      Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs.
      ]

      Reneaudeau 2010 [
      • Renaudeau D.
      • Anais C.
      • Tel L.
      • Gourdine J.L.
      Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function.
      ]

      Heldmaier 1974 [
      • Heldmaier G.
      Cold adaptation by short daily cold exposures in the young pig.
      ]
      Ducks 40.0–41.2 Smith 1976 [
      • Smith E.N.
      • Peterson C.
      • Thigpen K.
      Body temperature, heart rate and respiration rate of an unrestrained domestic mallard duck, Anas platyrhynchos domesticus.
      ]

      Artoni 1989 [
      • Artoni S.M.
      • Zuim S.M.
      • Macari M.
      Effects of antithyroid drug on the rectal temperature and metabolic parameters of ducks (Cairina moschata).
      ]

      Marais 2011 [
      • Marais M.
      • Gugushe N.
      • Maloney S.K.
      • Gray D.A.
      Body temperature responses of Pekin ducks (Anas platyrhynchos domesticus) exposed to different pathogens.
      ]
      White leghorn chickens 41.6–41.9 Hu 2019 [
      • Hu J.Y.
      • Hester P.Y.
      • Makagon M.M.
      • Xiong Y.
      • Gates R.S.
      • Cheng H.W.
      Effect of cooled perches on physiological parameters of caged White Leghorn hens exposed to cyclic heat.
      ,
      • Hu J.Y.
      • Hester P.Y.
      • Xiong Y.
      • Gates R.S.
      • Makagon M.M.
      • Cheng H.W.
      Effect of cooled perches on the efficacy of an induced molt in White Leghorn laying hens previously exposed to heat stress.
      ]

      References

        • Shi J.
        • Wen Z.
        • Zhong G.
        • Yang H.
        • Wang C.
        • Huang B.
        • et al.
        Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2.
        Science. 2020; 368: 1016
        • Oreshkova N.
        • Molenaar R.J.
        • Vreman S.
        • Harders F.
        • Oude Munnink B.B.
        • Hakze-van der Honing R.W.
        • et al.
        SARS-CoV-2 infection in farmed minks, The Netherlands, April and May 2020.
        Euro Surveill. 2020; 25
        • Ou X.
        • Liu Y.
        • Lei X.
        • Li P.
        • Mi D.
        • Ren L.
        • et al.
        Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.
        Nat Commun. 2020; 11: 1620
        • Wan Y.
        • Shang J.
        • Graham R.
        • Baric R.S.
        • Li F.
        Receptor Recognition by the Novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus.
        J Virol. 2020; 94 (20): e00127
        • Kirkcaldy R.D.
        • King B.A.
        • Brooks J.T.
        COVID-19 and Postinfection immunity: limited evidence, many remaining questions.
        JAMA. 2020 May 11;
      1. "Immunity passports" in the context of COVID-19.
        (WHO Scientific Brief 24/04/2020)
        • Okba N.M.A.
        • Müller M.A.
        • Li W.
        • Wang C.
        • GeurtsvanKessel C.H.
        • Corman V.M.
        • et al.
        Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients.
        Emerg Infect Dis. 2020; 26: 1478-1488https://doi.org/10.3201/eid2607.200841
        • Heath M.E.
        • Hammel H.T.
        Body temperature and rate of O2 consumption in Chinese pangolins.
        Am J Physiol. 1986; 250: R377-R382
        • Hu K.
        • Meng Y.
        • Lei H.
        • Zhang S.
        Differential changes of regional cerebral blood flow in two bat species during induced hypothermia measured by perfusion-weighted magnetic resonance imaging.
        J Comp Physiol B. 2011; 181: 117-123
        • Eberli P.
        • Gebhardt-Henrich S.G.
        • Steiger A.
        The influence of handling and exposure to a ferret on body temperature and running wheel activity of golden hamsters (Mesocricetus auratus).
        App Animal Behav Sci App Animal Behav Sci. 2011; 131: 131-137
        • Sia S.F.
        • Yan L.M.
        • Chin A.W.H.
        • Fung K.
        • Choy K.T.
        • Wong A.Y.L.
        • et al.
        Pathogenesis and transmission of SARS-CoV-2 in golden hamsters.
        Nature. 2020 May 14; https://doi.org/10.1038/s41586-020-2342-5
        • Wu D.
        • Tu C.
        • Xin C.
        • Xuan H.
        • Meng Q.
        • Liu Y.
        • et al.
        Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates.
        J Virol. 2005; 79: 2620-2625
        • Levy J.K.
        • Nutt K.R.
        • Tucker S.J.
        Reference interval for rectal temperature in healthy confined adult cats.
        J Feline Med Surg. 2015; 17: 950-952
        • Youngman P.M.
        Mustela Lutreola.
        Mammalian Species. 1990; 362 (JSTOR): 1-3
        • Maxwell B.M.
        • Brunell M.K.
        • Olsen C.H.
        Bentzel DE.Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo).
        J Am Assoc Lab Anim Sci. 2016; 55: 331-335
        • Refinetti R.
        • Piccione G.
        Daily rhythmicity of body temperature in the dog.
        J Vet Med Sci. 2003; 65: 935-937
        • Renaudeau D.
        • Huc E.
        • Noblet J.
        Acclimation to high ambient temperature in Large White and Caribbean Creole growing pigs.
        J Anim Sci. 2007; 85: 779-790
        • Renaudeau D.
        • Anais C.
        • Tel L.
        • Gourdine J.L.
        Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function.
        J Anim Sci. 2010; 88: 3715-3724
        • Heldmaier G.
        Cold adaptation by short daily cold exposures in the young pig.
        J Appl Physiol. 1974; 36: 163-168
        • Smith E.N.
        • Peterson C.
        • Thigpen K.
        Body temperature, heart rate and respiration rate of an unrestrained domestic mallard duck, Anas platyrhynchos domesticus.
        Comp Biochem Physiol A Comp Physiol. 1976; 54: 19-20
        • Artoni S.M.
        • Zuim S.M.
        • Macari M.
        Effects of antithyroid drug on the rectal temperature and metabolic parameters of ducks (Cairina moschata).
        Poult Sci. 1989; 68: 1381-1384
        • Marais M.
        • Gugushe N.
        • Maloney S.K.
        • Gray D.A.
        Body temperature responses of Pekin ducks (Anas platyrhynchos domesticus) exposed to different pathogens.
        Poult Sci. 2011; 90: 1234-1238
        • Hu J.Y.
        • Hester P.Y.
        • Makagon M.M.
        • Xiong Y.
        • Gates R.S.
        • Cheng H.W.
        Effect of cooled perches on physiological parameters of caged White Leghorn hens exposed to cyclic heat.
        Poult Sci. 2019; 98: 2317-2325
        • Hu J.Y.
        • Hester P.Y.
        • Xiong Y.
        • Gates R.S.
        • Makagon M.M.
        • Cheng H.W.
        Effect of cooled perches on the efficacy of an induced molt in White Leghorn laying hens previously exposed to heat stress.
        Poult Sci. 2019; 98: 4290-4300